Rhodium carbene complexes as versatile catalyst precursors for Si-H bond activation.

نویسندگان

  • Anneke Krüger
  • Martin Albrecht
چکیده

Rhodium(III) complexes comprising monoanionic C,C,C-tridentate dicarbene ligands activate Si-H bonds and catalyse the hydrolysis of hydrosilanes to form silanols and siloxanes with concomitant release of H(2). In dry MeNO(2), selective formation of siloxanes takes place, while changing conditions to wet THF produces silanols exclusively. Silyl ethers are formed when ROH is used as substrate, thus providing a mild route towards the protection of alcohols with H(2) as the only by-product. With alkynes, comparably fast hydrosilylation takes place, while carbonyl groups are unaffected. Further expansion of the Si-H bond activation to dihydrosilanes afforded silicones and polysilyl ethers. Mechanistic investigations using deuterated silane revealed deuterium incorporation into the abnormal carbene ligand and thus suggests a ligand-assisted mechanism involving heterolytic Si-H bond cleavage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diamido Complexes of Titanium and Zirconium as Catalyst Precursors for Ethylene Polymerization

A series of 8 new complexes of titanium and zirconium with diamido ligands bearing an ethylene and propylene bridge between the two amido groups were synthesized and tested for ethylene polymerization. Titanium complexes bearing an ethylene bridge between the two amido groups showed higher activities than the derivatives with a propylene bridge. In the case of the zirconium complexes, the p...

متن کامل

Smooth C(alkyl)-H bond activation in rhodium complexes comprising abnormal carbene ligands.

Rhodation of trimethylene-bridged diimidazolium salts induces the intramolecular activation of an alkane-type C-H bond and yields mono- and dimetallic complexes containing a formally monoanionic C,C,C-tridentate dicarbene ligand bound to each rhodium centre. Mechanistic investigation of the C(alkyl)-H bond activation revealed a significant rate enhancement when the carbene ligands are bound to ...

متن کامل

Competing reaction pathways of 3,3,3-trifluoropropene at rhodium hydrido, silyl and germyl complexes: C-F bond activation versus hydrogermylation.

The reaction of the silyl complex [Rh{Si(OEt)3}(PEt3)3] (1) with 3,3,3-trifluoropropene afforded the rhodium complex [Rh(CH2CHCF3){Si(OEt)3}(PEt3)2] (2) which features a bonded fluorinated olefin. In contrast the rhodium hydrido complex [Rh(H)(PEt3)3] (3) yielded on treatment with 3,3,3-trifluoropropene in the presence of a base the fluorido complex [Rh(F)(PEt3)3] (4) together with 1,1-difluoro...

متن کامل

Tandem deuteration/hydrosilylation reactions catalyzed by a rhodium carbene complex under solvent-free conditions.

The complex [Rh(I(t)Bu)(2)HCl] has been shown to be an active catalyst in the hydrosilylation of carbonyl and imine complexes. This reactivity, combined with the previously reported H/D exchange catalyzed by these complexes allows for a one pot, two step reaction using a single catalyst for both H/D exchange and hydrosilylation. Using triethylsilane, [Rh(I(t)Bu)(2)Cl] catalyst, and D(2) gas, de...

متن کامل

Synthesis and catalytic applications of 1,2,3-triazolylidene gold(i) complexes in silver-free oxazoline syntheses and C-H bond activation.

A series of novel 1,2,3-triazolylidene gold(i) chloride complexes have been synthesised and fully characterised. Silver-free methodologies for chloride ion abstraction of these complexes were evaluated for their potential as Au-based catalyst precursors. Using simple potassium salts or MeOTf as chloride scavengers produced metal complexes that catalyse both the regioselective synthesis of oxazo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 2012